On some nonlinear extensions of the Gagliardo-Nirenberg inequality with applications to nonlinear eigenvalue problems

نویسندگان

  • Agnieszka Kalamajska
  • Jan Peszek
چکیده

We derive inequality ∫ R |f ′(x)|ph(f(x))dx ≤ (√ p− 1 )p ∫ R (√ |f ′′(x)Th(f(x))| )p h(f(x))dx, where f belongs locally to Sobolev space W 2,1 and f ′ has bounded support. Here h(·) is a given function and Th(·) is its given transform, it is independent of p. In case when h ≡ 1 we retrieve the well known inequality: ∫ R |f ′(x)|pdx ≤ (√ p− 1 )p ∫ R (√ |f (x)f(x)| )p dx. Our inequalities have form similar to the classical second order Oppial inequalites. They also extend certain class of inequalities due to Mazya, used to obtain second order isoperimetric inequalities and capacitary estimates. We apply them to obtain new apriori estimates for nonlinear eigenvalue problems. The work is supported by the Polish Ministry of Science grant no. N N201 397837 (years 2009-2012). The work is supported by EU FP6 Marie Curie RTN programme CODY

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Constants for Gagliardo-nirenberg Inequalities and Applications to Nonlinear Diiusions ?

In this paper, we nd optimal constants of a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diiusion equations.

متن کامل

Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions

In this paper, we find optimal constants of a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diffusion equations.

متن کامل

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

Eigenvalue Problems for Degenerate Nonlinear Elliptic Equations in Anisotropic Media

We study nonlinear eigenvalue problems of the type −div(a(x)∇u) = g(λ,x,u) in RN , where a(x) is a degenerate nonnegative weight. We establish the existence of solutions and we obtain information on qualitative properties as multiplicity and location of solutions. Our approach is based on the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequal...

متن کامل

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows

This paper is devoted to one-dimensional interpolation Gagliardo-Nirenberg-Sobolev inequalities. We study how various notions of duality, transport and monotonicity of functionals along flows defined by some nonlinear diffusion equations apply. We start by reducing the inequality to a much simpler dual variational problem using mass transportation theory. Our second main result is devoted to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012